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ABSTRACT: A graphical method is introduced for compound
data mining and structure−activity relationship (SAR) data
analysis that is based upon a canonical structural organization
scheme and captures a compound−scaffold−skeleton hierarchy.
The graph representation has a constant layout, integrates
compound activity data, and provides direct access to SAR
information. Characteristic SAR patterns that emerge from the
graph are easily identified. The molecular hierarchy enables
“forward−backward” analysis of compound data and reveals
both global and local SAR patterns. For example, in
heterogeneous data sets, compound series are immediately
identified that convey interpretable SAR information in isolation
or in the structural context of related series, which often define
SAR pathways through data sets.

■ INTRODUCTION
For the extraction of SAR information from large compound
data sets, visualization techniques that view SAR features from
different angles have become increasingly popular in recent
years.1,2 For instance, graphical methods have been introduced
to globally represent data sets3−6 or generate compound-
centric7,8 and series-centric views.9−11 Global graphical analysis
approaches include molecular-network-type representations3,4

or diagrams that compare molecular similarity and activity
similarity of compounds in a pairwise manner.5,6 In these plots,
molecular similarity is generally assessed by calculating
Tanimoto similarity of test compounds using various
descriptors, in particular, fingerprints.5,6 In SAR networks,
similarity relationships (edges) might be established in an
analogous manner3 or by accounting for substructure relation-
ships between active compounds.4 In addition, local SAR
representations might either monitor the structural neighbor-
hood of active compounds7,8 or concentrate on individual
analogue series.9−11 The latter methods include graphical
extensions of conventional R-group tables9 as well as network-
like representations.10,11 In such networks, analogues might be
organized by substituent sites and site combinations9 or on the
basis of systematically determined substructure relationships.10

In addition to these global or local compound data set
representations, molecular scaffolds originating from active
compounds have also been graphically organized in different
ways.12 For example, for SAR monitoring, Scaffold Explorer13

has been introduced, an interactive editor that links scaffold-like
structures to an R-group table. Graphs containing these
structures can be interactively built, modified, and annotated
with SAR information. The tool is designed to aid medicinal
chemists in processing R-group tables containing different core

structures. Going beyond interactive analysis, a rule-based
organization scheme for scaffolds is provided by the Scaffold
Tree data structure.14 Following this approach, scaffolds are
decomposed along pathways by iteratively removing rings from
them according to a set of predefined chemical preference rules
until single-ring scaffolds remain. Given this rule-based
decomposition scheme, scaffolds might be obtained along the
tree that are not contained in the original data set compounds,
which is a key feature of this approach. These “virtual” scaffolds
can then be used for activity prediction, considering the activity
of neighboring “real” scaffolds. Compound activity predictions
on the basis of virtual scaffolds have been further exploited in
an extension of the Scaffold Tree approach termed Scaffold
Hunter.15

In principal, a scaffold-based representation of a compound
data set can be further extended specifically for SAR analysis by
following a hierarchical structural organization scheme from
active compounds over conventional molecular scaffolds16 to
cyclic skeletons (CSKs),17 which further abstract from scaffolds
by omitting heteroatom and bond order information. This
hierarchical organization scheme has previously been applied by
us to systematically map target annotations to different
compound classes.12 A key aspect of this approach is that
each CSK represents a family of topologically equivalent
scaffolds. Hence, scaffolds can be organized according to their
topology and further distinguished on the basis of chemical
criteria.
In order to utilize this concept for SAR analysis, we have

designed a canonical data structure that exploits structural
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compound−scaffold−skeleton hierarchy in a “forward−back-
ward” manner. This is accomplished by first extracting scaffolds
and CSKs from active compounds and then organizing the data

set in different layers defined by CSKs containing stepwise
increasing numbers of rings. These layers capture the associated
scaffold and compound information in a graphically intuitive

Figure 1. Graph generation. In (a) and (b), the generation of the LASSO graph is illustrated, as described in the text. In the exemplary data set,
compounds are labeled with their potency (Ki) values. Scaffolds are colored red. In (c), substructure relationships between CSKs across different
graph layers are depicted. In each pair of CSKs connected by an edge, the parental CSK is colored red. In addition, on the left, the prioritized
assignment of CSK relationships is illustrated.
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manner. We term this data structure the “layered skeleton−
scaffold organization” or LASSO graph (because its layout also
reminds us of “roping” SAR information). On the basis of our
evaluation, we find the LASSO graph structure to be very well
suited for compound data set representation and the
exploration of both global and local SAR features. For example,
analogue series are immediately identified that convey SAR
information in isolation or in the structural context of related
series. Furthermore, structural pathways through data sets are

obtained that also reveal SAR information. The design of the
LASSO graph and exemplary applications are reported herein.

■ METHODS AND MATERIALS
Scaffold Generation. Scaffolds consisting of ring systems

and linkers between them were obtained by removal of all R-
groups from compounds following Bemis and Murcko scaffold
definition.16 However, in a departure from this conventional
definition, exocyclic double bonds attached to ring atoms were
not removed but retained. Hence, substituents with exocyclic

Figure 2. Graph representation. Prototypic LASSO graphs are shown. (a) Melatonin receptor 1A antagonists. (b) Nociceptin receptor antagonists.
In (c), the rectangular subgraph on layer 5 on the left is enlarged and for each of six selected scaffolds (red) representing 3−25 compounds (reported
in parentheses) the least and most potent analogues are shown. These topologically equivalent scaffolds represent analogue series with different
potency progression.
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double bonds were not considered conventional R-groups. In
addition, this modification led to the generation of further
diversified scaffold sets. Scaffolds in LASSO graphs also contain
stereocenter information. Scaffolds were further transformed
into CSKs17 by changing all heteroatoms to carbons and setting
all bond orders to one. Importantly, scaffolds and CSKs are
separately accounted for in LASSO graphs as a part of
compound−scaffold−skeleton hierarchies.
Graph Design. The organization of the graph is based upon

systematically derived substructure relationships between CSKs
that are present in a data set. Scaffolds and compounds
associated with each CSK are incorporated into the graph
representation using different design elements, as discussed in
the following. Figure 1a and Figure 1b illustrate the design
elements of the graph.
Substructure Relationships. CSKs are organized by the

number of rings they contain. Each number of rings (from 1 to
n) corresponds to a separate layer in the graph. If a CSK
contains a condensed ring system, each participating ring is
considered a separate entity (and counted separately). Then a
parent−child relationship is defined between two CSKs if a
CSK at a given layer is completely contained in the structure of
another CSK at a higher layer. This might be the next higher
layer or a subsequent one, i.e., a parent−child relationship
might involve CSKs that differ by more than one ring. Figure
1b illustrates these substructure relationship assignments. If a
CSK has multiple possible parents, the relationship with a
parent is prioritized that contains fewer linker atoms between
rings, as illustrated in Figure 1c.
Layout. The resulting layers are captured in a hierarchical

graph structure. A radial graph layout is used for visualization.
Each level of the structural hierarchy is represented by a
concentric circle onto which CSKs with the corresponding
number of rings are placed as nodes. Therefore, the structural
complexity of CSKs increases from the inner to outer layers.
This layout enables the simultaneous presentation of multiple
subgraphs with different roots.
Annotation and Visualization. In Figure 1a, a model

compound set is shown and potency-based coloring is
illustrated. The compound potency range within a data set is
accounted for using a continuous color spectrum from green
(lowest) to red (highest potency in the data set). In Figure 1b,
CSKs are represented as rectangular nodes. Edges between two
CSKs define a parent−child substructure relationship. In
addition, individual scaffolds are depicted as circular nodes.
Scaffolds represented by a given CSK are embedded within the
rectangular CSK node. Thus, by definition, a CSK node must
contain at least one scaffold node. Furthermore, scaffolds are
color-coded based on the potency of the compounds they
represent. If a scaffold represents multiple compounds, it is
divided into an equally sliced pie chart where each slice
represents an individual compound colored by its potency.
Implementation. All routines required to generate

scaffolds and CSKs were implemented in Java using the
OpenEye chemistry toolkit.18 The graph structure was
generated using the Java package JUNG.19

Data Sets. For graph evaluation and SAR analysis, different
compound data sets were extracted from ChEMBL.20 The data
sets can be obtained via the following URL: http://www.limes.
uni-bonn.de/forschung/abteilungen/Bajorath/labwebsite
(please, see the “downloads” section).

■ RESULTS AND DISCUSSION

Characteristic Features of the LASSO Method. By
design, LASSO is an SAR data mining method. As such, it does
not directly provide suggestions for new analogues on the basis
of graphical analysis; i.e., it is not a predictive approach. The
methodology is devised to identify the most interesting
compound subsets or series in large and structurally
heterogeneous data sets, which is a particular strength of the
underlying hierarchical molecular organization. Once com-
pound series yielding interpretable SAR information have been
extracted from such data sets, design of new compounds can be
attempted in subsequent steps. Utilizing a hierarchical
organization scheme for data mining and analysis has additional
implications. For example, molecular hierarchies do not encode
synthetic routes to generate compounds. However, they
establish substructure and topological relationships between
compound series that could not be established on the basis of
synthetic criteria or by utilizing R-group tables or related
representations. Compared to other hierarchical scaffold
organizations such as scaffold trees, the most distinguishing
features of the LASSO approach include the addition of
topological relationships conveyed in the graphs and the
“forward−backward” analysis capacity of scaffold and corre-
sponding compound information, which provides an intuitive
access to SAR patterns. An important feature of LASSO is that
SAR information is represented in the form of compound−
scaffold−skeleton sequences (rather than only using scaffolds),
which reflects SAR information at different structural levels and
enables a direct comparison of SAR patterns in different
compound series.

Prototypic LASSO Graphs. In Figure 2, exemplary LASSO
graphs are shown to illustrate general topological character-
istics. The graph is arranged in concentric layers according to
the presence of increasing numbers of rings in CSKs. Hence,
layer 1 always corresponds to one or more CSKs containing a
single ring, which might or might not be present in a given data
set. If no single-ring CSK is available, layer 1 is empty. From
layer to layer, the number of rings contained in CSKs increases
exactly by 1. CSKs connected by edges form pathways across
different layers, depending on their substructure relationships.
The more substructure relationships are present, the more
densely connected the graph will be. Depending on these
relationships, CSK pathways might not involve each layer. In
addition, multiple pathways might originate from the same or
different layers (in this case, the JUNG implementation places
pathways on layers by balancing radial distances between
them). Importantly, any data set compound will appear in the
graph, regardless of whether the corresponding CSK is involved
in substructure relationships or not. The position of a
compound in the graph is determined by the number of
rings its CSK contains.
In Figure 2a and Figure 2b, LASSO graphs are shown for sets

of antagonists of the melatonin receptor 1A and nociceptin
receptor, respectively. Both graphs consist of six layers (i.e.,
CSKs contain a maximum of six rings), but their topology
differs. The melatonin receptor 1A antagonist set in Figure 2a is
structurally more homogeneous than the nociceptin receptor
antagonist set in Figure 2b that yields a number of singletons
and disjoint pathways. Furthermore, the graph of the nociceptin
receptor antagonist set has no CSK at the first layer and
contains only one CSK with two rings. In Figure 2c, the largest
rectangular node of the nociceptin receptor antagonist graph is
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displayed in detail. This subgraph contains analogue series
represented by a total of 21 topologically equivalent scaffolds.
Exemplary analogues are shown. As can be seen, these related
analogue series display rather different potency progression.
Hence, this node reveals a high degree of SAR heterogeneity
and the compound series it contains are a primary focal point of
SAR analysis.
SAR Patterns. As illustrated in Figure 1, compounds are

consistently represented in the LASSO graph as a part of the
skeleton−scaffold−compound hierarchy. This means that each
compound is contained in a rectangular CSK node and a
circular scaffold node. The presence of multiple compounds
sharing the same scaffold gives rise to a color-coded pie chart
representation of the scaffold node. By definition, these
compounds form an analogue series. In the LASSO graph,
characteristic patterns emerge that contain this basic design
element and reflect available SAR information. These character-
istic graph patterns are displayed in Figure 3. Pattern 1, the
simplest one, represents a series of analogues with steady
potency progression. Such a series typically contains interpret-
able SAR information. Pattern 2 mirrors the presence of
topologically equivalent analogue series with varying potency
distribution. In this case, SAR features can be compared across
different yet related scaffolds and series. Pattern 3 is a
characteristic horizontal pattern emerging from a LASSO
graph. Here, individual compounds or series share a particular
given CSK as the largest common substructure and are only
distinguished by the presence and/or position of an individual
ring. In this example, potency progression is observed from the
right to the left. The potency distribution among such series
might be indicative of preferred scaffolds. Furthermore, pattern
4 illustrates a characteristic vertical pattern, resulting from the
stepwise addition of a single ring to a CSK. In this case, steady
potency progression is also observed along the path. If
horizontal or vertical patterns contain compounds or series
with different potency distribution, they are arranged in the
order of increasing potency, which aids in the identification of
SAR-sensitive series and high-priority candidates for further
exploration.

Graph Analysis. In the following, two examples are
discussed to further illustrate the use of LASSO graphs for
SAR exploration.

Serotonin 7 Receptor Antagonists. In Figure 4a, the
LASSO graph of a set of 246 antagonists of the serotonin 7
receptor is shown. These compounds yield 119 distinct
scaffolds and 76 CSKs. The LASSO graph is characterized by
the presence of seven layers and densely connected pathways
that originate from the same CSK containing a single ring,
hence revealing many substructure relationships. In the graph,
three characteristic patterns are labeled (according to the
numbering scheme in Figure 3). In Figure 4b, structures
forming patterns 1 and 2 are shown in detail. In this and all
following illustrations of graph patterns, CSKs, corresponding
scaffolds, and (representative) compounds comprising a pattern
are shown. Pattern 1 in Figure 4b is formed by 24 analogues
spanning a large potency range, which represents a typical SAR
hotspot. In addition, pattern 2 is formed by the bipenyl scaffold
and three closely related scaffolds. However, similar analogues
represented by these scaffolds have significant differences in
potency, maximally of more than 3 orders of magnitude. Thus,
as revealed by the pattern, a substantial amount of SAR
information is available for these biphenyl derivatives. In Figure
4c, the third pattern marked in Figure 4a is shown in detail,
which represents a typical horizontal pattern. Five scaffolds and
the exemplary compounds they represent are displayed (in
several cases, the compounds already represent scaffolds). In
this case, the pattern is formed by only a few analogues with
steady potency progression of approximately 2 orders of
magnitude.

Bradykinin B1 Receptor Antagonists. In Figure 5a, the
LASSO graph of 348 antagonists of the bradykinin B1 receptor
is shown that yield 132 scaffolds and 68 CSKs. The LASSO
graph of this compound set also spans seven layers. Although
the numbers of CSKs and scaffolds are comparable to the
serotonin receptor antagonist example, in this case, the edge
density in the LASSO graph is low and a number of singletons
are observed, revealing the presence of only limited CSK
substructure relationships. Nevertheless, the graph also contains

Figure 3. Graph patterns. Shown are four characteristic graph elements or patterns that convey SAR information, as described in the text.
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a number of structural pathways and obvious patterns, three of
which are marked in Figure 5a (and again numbered according
to Figure 3). In Figure 5b, pattern 1 is highlighted, a series of
analogues with steady potency progression spanning nearly 4
orders of magnitude, one of the SAR hotspots in this data set.
From these analogues, it becomes immediately apparent that
the introduction of a nitrile group at the cyclohexane ring
significantly increases compound potency. Furthermore, single
halogen substiturents at the benzene ring are preferred at the
ortho and meta positions. However, the largest increase in

potency is observed when a bulky trifluoromethyl group is
present at the ortho-position. In addition, Figure 5c shows
structures that participate in the formation of pattern 2
involving a total of 10 topologically equivalent scaffolds (each
containing two pairs of condensed rings and two additional
single rings). Among these are chemically very similar scaffolds
representing compounds that are only distinguished by one or
two ring substitutions and/or stereochemistry at a single
stereocenter. However, these modifications cause potency
differences of 2−4 orders of magnitude. Hence, this pattern

Figure 4. LASSO graph of serotonin 7 receptor antagonists. In (a), the LASSO graph of the compound data set is shown and characteristic patterns
are marked and numbered according to Figure 3. In (b) and (c), these patterns and corresponding structures are depicted. For each CSK, the
numbers of corresponding scaffolds and compounds are reported in parentheses (in blue and red, respectively). For each pattern, CSKs, scaffolds
(on a light blue background), and representative compounds (light gray background) are shown (labeled with their pKi values). For pattern 1, R-
groups in compounds are colored red. For pattern 3, rings that distinguish CSKs are also colored red.
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identifies a highly SAR-informative compound subset. More-
over, in Figure 5d, pattern 4 is analyzed, a characteristic vertical
pattern formed by a disjoint structural pathway from layer 4 to
layer 6 in the graph. Here, the addition of two single rings in
subsequent steps leads to significant progression in potency.
The two scaffolds represented by the terminal CSK in layer 6
yield highly potent compounds. A comparison of two
representative highly potent compounds (with pKi values of
9.8 and 10.0, respectively; bottom of Figure 5d) containing a
terminal piperidyl ring with a compound represented by the
intermediate scaffold in layer 5 (pKi of 9.3; on the right in
Figure 5d) is particularly interesting. The latter compound is
much more potent than its closely related analogues and also
contains an aliphatic piperidine mimic at the corresponding
substitution site. Thus, this comparison clearly implicates the
piperidine substituent as an SAR determinant within this series.

It also illustrates that vertical graph patterns can reveal detailed
SAR information.

■ CONCLUSIONS

Herein we have introduced a new and intuitive graphical data
mining method for the structural organization and representa-
tion of compound sets and the exploration of SAR information.
The LASSO graph globally organizes compound sets according
to a well-defined structural hierarchy, integrates compound
activity data, and reveals signature patterns that capture SAR
information. Conceptually, the LASSO graph is related to the
Scaffold Tree data structure. However, different from the
Scaffold Tree and its extensions, the LASSO graph is not
designed for scaffold decomposition or generation of virtual
scaffolds. Moreover, it is focused on a compound data set rather
than scaffold representation. LASSO graphs also take an
additional structural criterion into account, the topological

Figure 5. LASSO graph of bradykinin B1 receptor antagonists In (a), the LASSO graph of the compound data set is shown and characteristic
patterns are marked and numbered according to Figure 3. In (b), (c), and (d), these patterns and corresponding structures are depicted. The
presentation is according to Figure 4. In the analogues corresponding to pattern 1, a conserved substituent at the pyridine moiety is shown in dark
gray and R-groups that reveal SAR information are shown in red and blue. For pattern 4, rings added at each layer are colored red.
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equivalence of scaffolds, which is assessed by considering cyclic
skeletons. Characteristic features of the LASSO graph include
its constant reference frame for the representation of
structurally homogeneous or heterogeneous compound sets
and its signature patterns that identify SAR-informative
compound subsets. A special feature of LASSO that sets it
apart from other scaffold representations is the presence of
compound−scaffold−skeleton sequences that capture substruc-
ture and topological features of active compounds at different
levels and enable “forward−backward” SAR exploration. The
data structure emphasizes both global and local structural and
SAR features. As such, the LASSO graph further extends the
current spectrum of graphical SAR analysis tools. Exemplary
applications suggest that ease of interpretation is a particular
attractive aspect of LASSO graph analysis.
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